๐ŸŒˆ ์ง€์—ฐ์˜ ๋ฌด์ง€๊ฐœ๋ฅผ ๋„˜์–ด์„œ: ๋‹ค์ค‘ ์—์ด์ „ํŠธ ๊ฐ•ํ™”ํ•™์Šต์˜ ์ƒˆ๋กœ์šด ์ง€ํ‰


Songchen Fu ๋“ฑ ์—ฐ๊ตฌ์ง„์ด ๋ฐœํ‘œํ•œ ๋…ผ๋ฌธ "Rainbow Delay Compensation"์€ ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์‹œ์Šคํ…œ์˜ ๊ด€์ธก ์ง€์—ฐ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด MARL ํ”„๋ ˆ์ž„์›Œํฌ์ธ RDC๋ฅผ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, RDC๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ  ์ง€์—ฐ ์—†๋Š” ์„ฑ๋Šฅ์— ๊ทผ์ ‘ํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋‹ค์–‘ํ•œ ์‹ค์ œ ์‘์šฉ ๋ถ„์•ผ์— ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์‹œ์‚ฌํ•˜๋ฉฐ, ๋ฏธ๋ž˜์˜ MARL ์—ฐ๊ตฌ์— ์ค‘์š”ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋ฉ๋‹ˆ๋‹ค.

related iamge

ํ˜„์‹ค ์„ธ๊ณ„์˜ ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์‹œ์Šคํ…œ(MAS)์—์„œ๋Š” ๊ด€์ธก ์ง€์—ฐ์ด ํ”ํžˆ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์—์ด์ „ํŠธ๊ฐ€ ํ™˜๊ฒฝ์˜ ์‹ค์ œ ์ƒํƒœ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์˜์‚ฌ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๋Š” ๊ฒƒ์„ ๋ฐฉํ•ดํ•˜๋Š” ์ฃผ์š” ์š”์ธ์ž…๋‹ˆ๋‹ค. Songchen Fu๋ฅผ ๋น„๋กฏํ•œ 6๋ช…์˜ ์—ฐ๊ตฌ์ง„์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์— ๋Œ€ํ•œ ํš๊ธฐ์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•˜๋Š” ๋…ผ๋ฌธ, "Rainbow Delay Compensation: A Multi-Agent Reinforcement Learning Framework for Mitigating Delayed Observation"์„ ๋ฐœํ‘œํ–ˆ์Šต๋‹ˆ๋‹ค.

Delayed Observation ๋ฌธ์ œ: ๋ณต์žกํ•œ ํ˜„์‹ค์˜ ๋ฐ˜์˜

๊ฐ ์—์ด์ „ํŠธ๋Š” ๋‹ค๋ฅธ ์—์ด์ „ํŠธ๋‚˜ ํ™˜๊ฒฝ ๋‚ด ๋™์ ์ธ ๊ฐœ์ฒด๋กœ๋ถ€ํ„ฐ ๋‹ค์–‘ํ•œ ๊ตฌ์„ฑ ์š”์†Œ๋ฅผ ํฌํ•จํ•˜๋Š” ๊ด€์ธก๊ฐ’์„ ๋ฐ›์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ด€์ธก๊ฐ’๋“ค์€ ์„œ๋กœ ๋‹ค๋ฅธ ์ง€์—ฐ ํŠน์„ฑ์„ ๊ฐ€์ง€๋ฉฐ, ์ด๋Š” ๋‹ค์ค‘ ์—์ด์ „ํŠธ ๊ฐ•ํ™”ํ•™์Šต(MARL)์— ํฐ ์–ด๋ ค์›€์„ ์•ผ๊ธฐํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์ง„์€ ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ถ„์‚ฐํ˜• ํ™•๋ฅ ์  ๊ฐœ๋ณ„ ์ง€์—ฐ ๋ถ€๋ถ„ ๊ด€์ธก ๋งˆ๋ฅด์ฝ”ํ”„ ์˜์‚ฌ๊ฒฐ์ • ๊ณผ์ •(DSID-POMDP) ์„ ์ •์˜ํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ Rainbow Delay Compensation (RDC) ์ด๋ผ๋Š” ์ƒˆ๋กœ์šด MARL ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค.

RDC: ์ง€์—ฐ์˜ ๋ฌด์ง€๊ฐœ๋ฅผ ๊ทน๋ณตํ•˜๋Š” ์†”๋ฃจ์…˜

RDC๋Š” ํ™•๋ฅ ์  ๊ฐœ๋ณ„ ์ง€์—ฐ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์œผ๋ฉฐ, ๊ตฌ์„ฑ ์š”์†Œ ๋ชจ๋“ˆ์— ๋Œ€ํ•œ ๊ตฌํ˜„ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. MPE์™€ SMAC๊ณผ ๊ฐ™์€ ํ‘œ์ค€ MARL ๋ฒค์น˜๋งˆํฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ DSID-POMDP์˜ ๊ด€์ธก ์ƒ์„ฑ ํŒจํ„ด์„ ๊ตฌํ˜„ํ–ˆ์Šต๋‹ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, ๊ธฐ์กด MARL ๋ฐฉ๋ฒ•์€ ๊ณ ์ • ๋ฐ ๋น„๊ณ ์ • ์ง€์—ฐ ๋ชจ๋‘์—์„œ ์‹ฌ๊ฐํ•œ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ๋ณด์˜€์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ RDC๋ฅผ ์ ์šฉํ•œ ๊ฒฝ์šฐ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๊ฐ€ ํฌ๊ฒŒ ์™„ํ™”๋˜์—ˆ์œผ๋ฉฐ, ํŠน์ • ์ง€์—ฐ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ๋Š” ์ง€์—ฐ ์—†๋Š” ์ด์ƒ์ ์ธ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ ๋˜ํ•œ ์œ ์ง€ํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์ง€์—ฐ ๊ด€์ธก ๋ฌธ์ œ์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ๊ด€์ ์„ ์ œ์‹œํ•˜๊ณ , ํšจ๊ณผ์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ๊ณตํ•˜๋Š” ์ค‘์š”ํ•œ ๊ฒฐ๊ณผ์ž…๋‹ˆ๋‹ค. (์†Œ์Šค ์ฝ”๋“œ๋Š” https://anonymous.4open.science/r/RDC-pymarl-4512/ ์—์„œ ํ™•์ธ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.)

๋ฏธ๋ž˜๋ฅผ ํ–ฅํ•œ ์ „๋ง

RDC๋Š” ๋‹ค์–‘ํ•œ ์‹ค์ œ ์‘์šฉ ๋ถ„์•ผ, ์˜ˆ๋ฅผ ๋“ค์–ด ์ž์œจ์ฃผํ–‰, ๋กœ๋ณดํ‹ฑ์Šค, ์Šค๋งˆํŠธ ๊ทธ๋ฆฌ๋“œ ๋“ฑ์— ์ ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ์ž ์žฌ๋ ฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๋‹จ์ˆœํ•œ ๊ธฐ์ˆ ์  ๋ฐœ์ „์„ ๋„˜์–ด, ๋ณต์žกํ•œ ์‹œ์Šคํ…œ์—์„œ ์ง€์—ฐ ๋ฌธ์ œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋Š” ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•˜๋ฉฐ, ๋ฏธ๋ž˜์˜ MARL ์—ฐ๊ตฌ์— ์ค‘์š”ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์ง„์˜ ๋…ธ๋ ฅ์€ ์ง€์—ฐ์ด๋ผ๋Š” '๋ฌด์ง€๊ฐœ' ๋„ˆ๋จธ, ๋”์šฑ ํšจ์œจ์ ์ด๊ณ  ์•ˆ์ •์ ์ธ ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์‹œ์Šคํ…œ ๊ตฌ์ถ•์˜ ๊ธธ์„ ์—ด์–ด์ค„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.


*์ด ๊ธฐ์‚ฌ๋Š” AI๊ฐ€ ์ƒ์„ฑํ•œ ๋‚ด์šฉ์œผ๋กœ, ์ผ๋ถ€ ์ •๋ณด๊ฐ€ ์‹ค์ œ์™€ ๋‹ค๋ฅผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ •ํ™•ํ•œ ํ™•์ธ์„ ์œ„ํ•ด ์ถ”๊ฐ€์ ์ธ ๊ฒ€์ฆ์„ ๊ถŒ์žฅ๋“œ๋ฆฝ๋‹ˆ๋‹ค.

Reference

[arxiv] Rainbow Delay Compensation: A Multi-Agent Reinforcement Learning Framework for Mitigating Delayed Observation

Published: ย (Updated: )

Author: Songchen Fu, Siang Chen, Shaojing Zhao, Letian Bai, Ta Li, Yonghong Yan

http://arxiv.org/abs/2505.03586v3